在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
c语言中的进制 c语言中各种进制数的表示篇一
进制是一种计数的方式,常用的有二进制、八进制、十进制、十六进制。任何数据在计算机内存中都是以二进制的形式存放的。
我对进制的个人理解,二进制数是以2为计算单元,满2进1位的数;八进制数是以8为计算单元,满8进1位的数。
对于任何一个数字,我们都可以用不同的进制来表示,比如,十进制数12,用二进制表示为1100,用八进制表示为14,用十六进制表示为0xc。
遵循满进制值进1位,个位数变为0的`原理,下面我们以十进制数18为例,对1-18中每一个数值转换各种进制做一个详细说明
转二进制:
1小于2,无需进1位,1的二进制值是1
2为二进制值1后面一个数,由于1+1满2,需要进1位,个位数变为0,所以2的二进制值是10
3为二进制值10后面一个数,由于11的个位数1小于2,无需进1位,所以3的二进制值是11
4为二进制值11后面一个数,由于11的个位数1+1满2,需要进1位,而二进制值11的位数1+1又满2,所以位数加1,最终转换结果为100
转换思路:二进制值11+1 ->10+(1+1)(个位等于2,进1位,个位数变为0) ->(1+1)+0(位数满2,进1位) -> 100
以此类推,最终十进制数18的二进制转换结果是10010
转八进制:
1-7小于8,无需进1位,1-7的八进制由1-7表示
8为八进制值7后面一个数,由于7+1满8,需要进1位,个位数变为0,所以8的八进制值是10
以此类推,最终十进制数18的八进制转换结果是22
转十六进制
十六进制中,个位数1-15分别为1 2 3 4 5 6 7 8 9 a b c d e f (a=10....f=15)
16为十六进制值c后面1个数,由于c+1满16,需要进1位,个位数变为0,所以16的十六进制是10。
最终十进制数18的十六进制转换结果是12
详细结果如下图所示(c语言把数字前面加0x的数认为是十六进制数)
虽然以下3个变量的赋值方式不同,但实际赋值结果都是18
复制代码 代码如下: //二进制类型数字加0b int number1 = 0b10010; //八进制类型数字加0 int number2 = 022; //十六进制类型数字加0x int number3 = 0x12;
八进制占位符:%o
十六进制占位符:%x
我们知道,int类型数据占据4个字节,1个字节是8bit。并且任何数据在计算机内存中都是以二进制的形式存放的,所以内存需要用32个0或1来描述1个int类型数据。
由于18的二进制数是10010,我们将一个int类型变量赋值18,本质上是将这个变量的内存地址对应的32个bit位修改为:
0000 0000 0000 0000 0000 0000 0001 0010(未满31位,后面的数字用0填充:为什么是31而不是32呢,后面会介绍)
假设我们定义两个变量
//二进制类型数字加0b int number1 = 0b10010; //八进制类型数字加0 int number2 = 022; //十六进制类型数字加0x int number3 = 0x12;
计算机会根据内存地址以由大到小的顺序进行分配内存空间,具体如下图所示:
二进制转十进制
0b1100 ->0*2的0次方 + 0*2的1次方 + 1*2的2次方 + 1*2的3次方 = 12
十进制转二进制
67 ->64+2+1 ->2的6次方+ 2的1次方 + 2的0次方 = 0b1000011
1.n位二进制能保存的整数范围公式:2的n次方-1
例如,3位的二进制数最大值为111,对应的十进制数字为7;5位的二进制数最大值为11111,对应的十进制数字为(2*2*2*2*2)-1 = 31。
2.负数的二进制保存规则是最左边的数字是1。例如,0000 0000 0000 0000 0000 0000 0001 0010 表示正整数,1111 1111 1111 1111 1111 1111 1110 1101表示负数
由此,我们就能推测出,int类型能保存的最大整数是2的(32-1)次方-1 =2147483647。为什么要用32-1,很简单,32个bit中,必须抽1个bit位用来描述这个数字是正数还是负数。
s("content_relate");