每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
八年级数学上课件篇一
(1)知识结构
(2)重点、难点分析
本节内容的重点是线段垂直平分线定理及其逆定理。定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据。
本节内容的难点是定理及逆定理的关系。垂直平分线定理和其逆定理,题设与结论正好相反。学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点。
2、 教法建议
本节课教学模式主要采用“学生主体性学习”的教学模式。提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳。教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人。具体说明如下:
(1)参与探索发现,领略知识形成过程
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”。然后学生完成证明,找一名学生的证明过程,进行投影总结。最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理。这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取逆定理
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系。
(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力。
八年级数学上课件篇二
教学目标:
一、知识与技能
1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
二、过程与方法
1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。
三、情感态度与价值观
1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。
2、通过分组讨论,培养学生合作交流意识和探索精神。
教学重点:理解和领会反比例函数的概念。
教学难点:领悟反比例的概念。
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为1、68×104平方千米,人均占有土地面积s(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。
①能否积极主动地合作交流。
②能否用语言说明两个变量间的关系。
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。
分析及解答:
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有
的形式,其中k是常数。
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为20__m3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积s的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积s的变化而变化。
师生行为
学生先独立思考,在进行全班交流。
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念。
概念:如果两个变量x,y之间的关系可以表示成
的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零。
活动3
做一做:
一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm。那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流。教师提出问题,关注学生思考。此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值。
师生行为:
学生独立思考,然后小组合作交流。教师巡视,查看学生完成的情况,并给予及时引导。在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
分析及解答:
1、只有xy=123是反比例函数。
2、分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值。
解:(1)设,因为x=2时,y=6,所以有
解得k=12
因此
(2)把x=4代入,得
三、巩固提高
活动5
1、已知y是x的反比例函数,并且当x=3时,y=8。
(1)写出y与x之间的函数关系式。
(2)求y=2时x的值。
2、y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表。
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”。
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解。在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象。反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象。
八年级数学上课件篇三
一、学习目标:
1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;
2、会运用两数差的平方公式进行计算。
二、学习过程:
请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:
(一)探索
1、计算: (a - b) =
方法一: 方法二:
方法三:
2、两数差的平方用式子表示为_________________________;
用文字语言叙述为___________________________ 。
3、两数差的平方公式结构特征是什么?
(二)现学现用
利用两数差的平方公式计算:
1、(3 - a) 2、 (2a -1) 3、(3y-x)
4、(2x – 4y) 5、( 3a - )
(三)合作攻关
灵活运用两数差的平方公式计算:
1、(999) 2、( a – b – c )
3、(a + 1) -(a-1)
(四)达标训练
1、、选择:下列各式中,与(a - 2b) 一定相等的是( )
a、a -2ab + 4b b、a -4b
c、a +4b d、 a - 4ab +4b
2、填空:
(1)9x + + 16y = (4y - 3x )
(2) ( ) = m - 8m + 16
2、计算:
( a - b) ( x -2y )
3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?
(四)提升
1、本节课你学到了什么?
2、已知a – b = 1,a + b = 25,求ab 的值