小花文档网综合范文其他范文内容页

风力发电基础工程造价五篇(通用)

2023-05-15其他范文下载文档

个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。

风力发电基础工程造价篇一

是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。相对柴油发电要好的多。但是若应急来用的话,还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

现状:风力发电正在世界上形成一股热潮,风力发电在芬兰、丹麦等国家很流行;我国风能资源十分丰富,我国也在西部地区大力提倡,管理滞后影响风电“进步”首先,我国对风能资源的普查、评价、规划管理严重滞后,资源分散,缺少整合,没有形成全国统一的国家级风电产业研机机构,缺少对产业资源的集中和整合。

其次,单位kw造价高,火电平均4500元/kw,风电平均每8000~9000元/kw,平均造价高于火电。火电平均电价0.36元/千瓦时,风电平均电价为0.56元/千瓦时,在我国南方地区电价,还要略高于北方地区。影响电网并网发电的积极性。第三,目前市场和产业化基本上没有形成,风电机组和系统设计技术、设备性能、效率以及技术工艺水平与欧洲相比存在很大差距。国产风电关键部件,如液压系统、联合器、电控等可靠性差,技术不够成熟。

改善“环境”加快风电步伐

前景:它的优势不需要燃料、不占耕地、没有污染,运行成本低。;风力发电产业发展前景非常广阔,为风力发电没有燃料问题,也不会产生辐射或空气污染。

我国风能资源十分丰富,它是一种干净的可再生能源;风力发电产业发展前景非常广阔,优缺点:它的优势不需要燃料、不占耕地、没有污染,运行成本低,我国风力资源丰富,缺点,效率低,造价昂贵,技术有待改进,管理不够完善

风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;

机头的转子是永磁体,定子绕组切割磁力线产生电能。风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。机械连接与功率传递水平轴风机桨叶通过齿轮箱及其高速轴与万能弹性联轴节相连,将转矩传递到发电机的传动轴,此联轴节应按具有很好的吸收阻尼和震动的特性,表现为吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。另一种为直驱型风机桨叶不通过齿轮箱直接与电机相连风机电机类型

风力发电基础工程造价篇二

风力发电机

在风力发电中,当风力发电机与电网并联运行时,要求风电频率和电网频率保持一致,即风电频率保持恒定,因此风力发电系统分为恒速恒频发电机系统(cscf 系统)和变速恒频发电机系统(vscf 系统)。恒速恒频发电机系统是指在风力发电过程中保持发电机的转速不变从而得到和电网频率一致的恒频电能。恒速恒频系统一般来说比较简单,所采用的发电机主要是同步发电机和鼠笼式感应发电机,前者运行于由电机极数和频率所决定的同步转速,后者则以稍高于同步转速的速度运行。变速恒频发电机系统是指在风力发电过程中发电机的转速可以随风速变化,而通过其他的控制方式来得到和电网频率一致的恒频电能。1 恒速恒频发电系统

目前,单机容量为600~750kw 的风电机组多采用恒速运行方式,这种机组控制简单,可靠性好,大多采用制造简单,并网容易、励磁功率可直接从电网中获得的笼型异步发电机。

恒速风电机组主要有两种类型:定桨距失速型和变桨距风力机。定桨距失速型风力机利用风轮叶片翼型的气动失速特性来限制叶片吸收过大的风能,功率调节由风轮叶片来完成,对发电机的控制要求比较简单。这种风力机的叶片结构复杂,成型工艺难度较大。而变桨距风力机则是通过风轮叶片的变桨距调节机构控制风力机的输出功率。由于采用的是笼型异步发电机,无论是定桨距还是变桨距风力发电机,并网后发电机磁场旋转速度由电网频率所固定,异步发电机转子的转速变化范围很小,转差率一般为3%~5%,属于恒速恒频风力发电机。

1.1 定桨距失速控制

定桨距风力发电机组的主要特点是桨叶与轮毂固定连接,当风速变化时,桨叶的迎风角度固定不变。利用桨叶翼型本身的失速特性,在高于额定风速下,气流的功角增大到失速条件,使桨叶的表面产生紊流,效率降低,达到限制功率的目的。在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。采用这种方式的风力发电系统控制调节简单可靠,但为了产生失速效应,导致叶片重,结构复杂,机组的整体效率较低,当风速达到一定值时必须停机。

失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。其缺点是叶片重晏大(与变桨距风机叶片比较),桨叶、轮载、塔架等部件受力较大,机组的整体效率较低。

1.2 变桨距调节方式

在目前应用较多的恒速恒频风力发电系统中,一般情况要维持风力机转速的稳定,这在风速处于正常范围之中时可以通过电气控制而保证,而在风速过大时,输出功率继续增大可能导致电气系统和机械系统不能承受,因此需要限制输出功率并保持输出功率恒定。这时就要通过调节叶片的桨距,改变气流对叶片攻角,从而改变风力发电机组获得的空气动力转矩。

由于变桨距调节型风机在低风速时,可使桨叶保持良好的攻角,比失速调节型风机有更好的能量输出,因此比较适合于平均风速较低的地区安装。变桨距调节的另外一个优点是在风速超速时可以逐步调节桨距角,屏蔽部分风能,避免停机,增加风机发电量。对变桨距调节的一个要求是其对阵风的反应灵敏性。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。

变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。

1.3 主动失速调节

主动失速调节方式是前两种功率调节方式的组合,吸取了被动失速和变桨距调节的优点。系统中桨叶设计采用失速特性,系统调节采用变桨距调节,从而优化了机组功率的输出。系统遭受强风达到额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出。随着风速的不断变化,桨叶仅需微调即可维持失速状态。另外调节桨叶还可实现气动刹车。这种系统的优点是既有失速特性,又可变桨距调节,提高了机组的运行效率,减弱了机械刹车对传动系统的冲击。系统控制容易,输出

功率平稳,执行机构的功率相对较小。

恒速恒频风力发电机的主要缺点有以下几点:

1)风力机转速不能随风速而变,从而降低了对风能的利用率;

2)当风速突变时,巨大的风能变化将通过风力机传递给主轴、齿轮箱和发电机等部件,在这些部件上产生很大的机械应力;

3)并网时可能产生较大的电流冲击。

目前的恒速机组,大部分使用异步发电机,在发出有功功率的同时,还需要消耗无功功率(通常安装电容器给以补偿)。而现代变速风电机组却能十分精确地控制功率因数,甚至向电网输送无功,改善系统的功率因数。由于以上原因,变速风电机组越来越受到风电界的重视,特别是在进一步发展的大型机组中将更为引人注目。当然,决定变速机组设计是否成功的一个关键是变速恒频发电系统及其控制装置的设计。将定桨距失速调节型与变桨距调节型两种风力发电机组相结合,充分吸取了被动失速和桨距调节的优点,桨叶采用失速特性,调节系统采用变桨距调节。在低风速肘,将桨叶节距调节到可获取最大功率位置,桨距角调整优化机组功率的输出;当风力机发出的功率超过额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出,随着风速的不断变化,桨叶仅需要微调维持失速状态。制动刹车时,调节桨叶相当于气动刹车,很大程度上减少了机械刹车对传动系统的冲击。

主动失速调节型的优点是其言了定奖距失速型的特点,并在此基础上进行变桨距调节,提高了机同频率后并入电网。机组在叶片设计上采用了变桨距结构。其调节方法是:在起动阶段,通过调节变桨距系统控制发电机转速,将发电机转速保持在同步转速附近,寻找最佳并网时机然后平稳并网;在额定风速以下时,主要调节发电机反力转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上时,采用变速与桨叶节距双重调节,通过变桨距系统调节限制风力机获取能量,保证发电机功率输出的稳定性,获取良好的动态特性;而变速调节主要用来响应快速变化的风速,减轻桨距调节的频繁动作,提高传动系统的柔性。变速恒频发电系统

利用变速恒频发电方式,风力机就可以改恒速运行为变速运行,这样就可能使风轮的转速随风速的变化而变化,使其保持在一个恒定的最佳叶尖速比,使风力机的风能利用系数在额定风速以下的整个运行范围内都处于最大值,从而可比恒速运行获取更多的能量。尤其是这种变速机组可适应不同的风速区,大大拓宽了风力发电的地域范围。即使风速跃升时,所产生的风能也部分被风轮吸收,以动能的形式储存于高速运转的风轮中,从而避免了主轴及传动机构承受过大的扭矩及应力,在电力电子装置的调控下,将高速风轮所释放的能量转变为电能,送入电网,从而使能量传输机构所受应力比较平稳,风力机组运行更加平稳和安全

变速恒频风力机组可在风速低于额定风速时,通过调节发电机转子转速,尽可能最大地捕获风能,同时稳定发电机输出电能的频率;在风速高于额定风速时通过变桨距保持额定发电功率,仍可捕获“最大”能量。

变速恒频这种调节方式是目前公认的最优化调节方式,也是未来风电技术发展的主要方向。变速恒频的优点是大范围内调节运行转速,来适应因风速变化而引起的风力机功率的变化,可以最大限度的吸收风能,因而效率较高;控制系统采取的控制手段可以较好的调节系统的有功功率、无功功率,但控制系统较为复杂。

风力发电机变速恒频控制方案一般有四种:鼠笼式异步发电机变速恒频风力发电系统;交流励磁双馈发电机变速恒频风力发电系统;无刷双馈发电机变速恒频风力发电系统;永磁发电机变速恒频风力发电系统。

2.1 鼠笼式异步发电机变速恒频风力发电系统

采用的发电机为鼠笼式转子,其变速恒频控制策略是在定子电路实现的。由于风速是不断变化的,导致风力机以及发电机的转速也是变化的,所以实际上鼠笼式风力发电机发出的电是频率变化的,即为变频的,通过定子绕组与电网之间的变频器把变频的电能转化为与电网频率相同的恒频电能。尽管实现了变速恒频控制,具有变速恒频的一系列优点,但由于变频器在定子侧,变频器的容量需要与发电机的容量相同,使得整个系统的成本、体积和重量显著增加,尤其对于大容量的风力发电系统。

2.2 双馈式变速恒频风力发电系统

双馈式变速恒频风力发电系统常采用的发电机为转子交流励磁双馈发电机,其结构与绕线式异步电机

类似。由于这种变速恒频控制方案是在转子电路实现的,流过转子电路的功率是由交流励磁发电机的转速运行范围所决定的转差功率,该转差功率仅为定子额定功率的一小部分,故所需的双向变频器的容量仅为发电机容量的一小部分,这样该变频器的成本以及控制难度大大降低。这种采用交流励磁双馈发电机的控制方案除了可实现变速恒频控制,减少变频器的容量外,还可实现对有功、无功功率的灵活控制,对电网而言可起到无功补偿的作用。缺点是交流励磁发电机仍然有滑环和电刷。

目前已经商用的有齿轮箱的变速恒频系统,大部分采用绕线式异步电机作为发电机,由于绕线式异步发电机有滑环和电刷,这种摩擦接触式结构在风力发电恶劣的运行环境中较易出现故障。而无刷双馈电机定子有两套级数不同绕组,转子为笼型结构,无须滑环和电刷,可靠性高。这些优点都使得无刷双馈电机成为当前研究的热点。但在目前,这种电机在设计和制造上仍然存在着一些难题。

2.3 直驱型变速恒频风力发电系统

近几年来,直接驱动技术在风电领域得到了重视。这种风力发电机组采用多极发电机与叶轮直接连接进行驱动,从而免去了齿轮箱这一传统部件,由于其具有很多技术方面的优点,特别是采用永磁发电机技术,其可靠性和效率更高,处于当今国际上领先地位,在今后风电机组发展中将有很大的发展空间。在德国2003 年上半年所安装的风力机中,就有40.9%采用了无齿轮箱系统。直驱型变速恒频风力发电系统的发电机多采用永磁同步发电机,其转子为永磁式结构,无须外部提供励磁电源,提高了效率。其变速恒频控制也是在定子电路实现的,把永磁发电机发出变频的交流电通过变频器转变为与电网同频的交流电,因此变频器的容量与系统的额定容量相同。采用永磁发电机可做到风力机与发电机的直接耦合,省去了齿轮箱,即为直接驱动式结构,这样可大大减少系统运行噪声,提高了可靠性。尽管由于直接耦合,永磁发电机的转速很低,使发电机体积很大,成本较高,但由于省去了价格更高的齿轮箱,所以,整个系统的成本还是降低了。

另外,电励磁式径向磁场发电机也可视为一种直驱风力发电机的选择方案,在大功率发电机组中,它的直径大而轴向长度小。为了能放置励磁绕组和极靴,极距必须足够大,它输出的交流电频率通常低于50 hz,必须配备整流逆变器。直驱式永磁风力发电机的效率高、极距小,况且永磁材料的性价比正得到不断提升,应用前景十分广阔。

2.4 混合式变速恒频风力发电系统

直驱式风力发电系统不仅需要低速、大转矩电机而且直驱式风力发电系统不仅需要低速、大转矩电机而且需要全功率变流器,为了降低电机设计难度,带有低变速比齿轮箱的混合型变速恒频风力发电系统得到实际应用。这种系统可以看成是全直驱传动系统和传统解决方案的一个折中。发电机是多极的,和直驱设计本质上一样,但它更紧凑,相对来说具有更高的速度和更小的转矩。离网型风力发电机系统

通常离网型风力发电机组容量较小,均属小型发电机组。可按照发电容量的大小进行分类,其大小从几百w 至几十kw 不等。自20 世纪80 年代初开始,中国的小型风力机制造业,在政府的支持下,尤其是内蒙古自治区政府的大力扶植,得到了引人瞩目的发展,十几万台小型风力发电机的生产和推广应用,为远离电网的农牧民解决了基本的生活用电,尤其是照明和收听广播电视,作出了不可磨灭的贡献。据统计,在20 世纪80 年代初期,国内有近百家小型风力发电机制造企业。随着改革开放的不断深化以及社会经济的发展,这些小型风力发电机制造企业经过内部的调整和外部的整合,根据中国农村能源行业协会小型电源专委会的统计,到目前为止,全国有23 家小型风力发电机生产企业,2005 年共生产小型风力发电机32 433 台,装机容量为12 020 kw,产值8 472 万元,利税为993 万元。国内生产的小型风力发电机,单机容量从60w 到30 kw 不等。

小型风力发电机按照发电类型的不同进行分类,可分为直流发电机型、交流发电机型。较早时期的小容量风力发电机组一般采用小型直流发电机,在结构上有永磁式及电励磁式两种类型。永磁式直流发电机利用永磁铁提供发电机所需的励磁磁通;;电励磁式直流发电机则是借助在励磁线圈内流过的电流产生磁通来提供发电机所需要的励磁磁通,由于励磁绕组与电枢绕组连接方式的不同,又可分为他励与并励(或自励)两种形式。

随着小型风力发电机组的发展,发电机类型逐渐由直流发电机转变为交流发电机。主要包括永磁发电机、硅整流自励交流发电机及电容自励异步发电机。其中,永磁发电机在结构上转子无励磁绕组,不存在励磁绕组损耗,效率高于同容量的励磁式发电机;转子没有滑环,运转时更安全可靠;电机重量轻,体积小,工艺简便,因此在离网型风力发电机中被广泛应用,但其缺点是电压调节性能差。硅整流自励交流

发电机是通过与滑环接触的电刷与硅整流器的直流输出端相连,从而获得直流励磁电流。但是由于风力的随机波动会导致发电机转速的变化,从而引起发电机出口电压的波动,这将导致硅整流器输出直流电压及发电机励磁电流的变化,并造成励磁磁场的变化,这样又会造成发电机出口电压的波动。因此,为抑制这种连锁的电压波动,稳定输出,保护用电设备及蓄电池,该类型的发电机需要配备相应的励磁调节器。电容自励异步发电机是根据异步发电机在并网运行时,电网供给的励磁电流对异步感应电机的感应电动势而言是容性电流的特性而设计的。即在风力驱动的异步发电机独立运行时,未得到此容性电流,须在发电机输出端并接电容,从而产生磁场建立电压。为维持发电机端电压,必须根据负载及风速的变化调整并接电容的数值。

目前小风机产业的规模不大,年产量仅12 mw,年产值仅8 472 万元。主要以几百w 的小风机为主。无论是小型风力发电机的数量还是单机容量,主打产品的规格为200w 和300w,约占了半壁江山。

我国的小型风力发电机产业总体上是在向好的方向发展,小型风力发电机及其与太阳能的互补系统在解决边远地区无电问题上作出了不可磨灭的贡献。它的功率比同类太阳能系统来得大,能为更多的负载甚至小型生产性负载提供电力,它的价位更易为广大农牧民所接受,如果政府采用小风电或风光互补系统来解决农村无电问题,则政府的投入将比相同功率的太阳能系统少得多。但是,小型风力发电机及其行业在发展中也同样面临着困难和挑战。这些困难和挑战,既来自产业的内部,也来自产业的外部环境。4 结语

变桨距风力机的起动风速较定桨距风力机低,停机时传动机械的冲击应力相对缓和。风机正常工作时主要采用功率控制,对功率调节的速度取决于风机桨距调节系统的灵敏度。在实际应用中,随着并网型风力发电机组容量的增大,大型风力机的单个叶片已重达数吨,操纵如此巨大的惯性体,并且响应速度要能跟得上风速变化是相当困难的。事实上,如果没有其他措施的话,只是通过变桨距来调节风力发电机组的功率对高风速变化仍然是无能为力的。因此,变桨距风力发电机组,除了对桨叶进行节距控制外,还须通过控制发电机输出功率来调节整个风力发电机组的转速,使之在一定范围内能够快速响应风速的变化,使风力机的叶尖速比达到最佳,以捕获最大的风能。这就是近年来所发展的变速恒频风力发电技术。比较来看,定桨距失速控制风力机结构简单,造价低,并具有较高的安全系数,利于市场竞争,但失速型叶片本身结构复杂,成型工艺难度也较大。随着功率增大,叶片加长,所承受的气动推力增大,叶片的失速动态特性不易控制,使制造更大机组受到限制。变桨距型风力机能使叶片的节距角随风速而变化,从而使风力机在各种工况(起动、正常运转、停机)下按最佳参数运行,可使发电机在额定风速以下的工作区段有较大的功率输出,而在额定风速以上的高风速区段不超载,无需过大容量的发电机等。当然,它的缺点是需要有一套比较复杂的变距调节结构。现在这两种功率调节方案都在大、中型风力发电机组中得到了广泛应用。目前中国风电发展面临两个突出的问题:一是风电发展规模迅速扩大,形成巨大的市场空间;二是国产机组缺乏竞争力,进口机组以压倒的优势占领了中国风电装机的主要份额。因此,大型风电机组的国产化是推动我国风电持续发展的根本途径。

风力发电基础工程造价篇三

风力发电

风能作为一种清洁的可再生能源,越来越受到世界各国的重视。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。风是一种潜力很大的新能源,十八世纪初风力发电图,横扫英法两国的一次狂暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。目前全世界每年燃烧煤所获得的能量,只有风力在一年内所提供能量的三分之一。因此,国内外都很重视利用风力来发电,开发新能源。利用风力发电的尝试,早在二十世纪初就已经开始了。三十年代,丹麦、瑞典、苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装置。这种小型风力发电机,广泛在多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型内燃机的发电成本低得多。不过,当时的发电量较低,大都在5千瓦以下

风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。

优点

1、清洁,环境效益好;

2、可再生,永不枯竭;

3、基建周期短;

4、装机规模灵活。

缺点

1、噪声,视觉污染;

2、占用大片土地;

3、不稳定,不可控;

4、目前成本仍然很高。

5、影响鸟类。

风力发电基础工程造价篇四

1.风力发电机主机及风叶:主要发电核心,通过风叶旋转带动风力发电机转子旋转切割磁力线,从而把旋转动能转化成电能。

2.控制器:通常风力发电机发出的电为不稳定三相交流电,如果直接使用会造成用电器的损坏,控制器的作用除了把风力发电机发出的不稳定三相电通过整流输出可以给蓄电池充电的直流电,同时控制器也实时检测风力发电机与蓄电池的电压,避免风力发电机在大风时电压过高导致损坏,也防止蓄电池由于过充导致损坏。

3.蓄电池:储存风力发电机发出的电力以便在需要时使用。

4.逆变器:把蓄电池里的直流电转换成交流电供给交流负载使用。(直流负载不需要逆变器,可以直接接蓄电池使用)

5.塔架:帮助支撑及固定风力发电机到地面或任何足够牢固能安装风力发电机的介质。

6.太阳能板(选配):由于风力资源属于不稳定的自然资源,在部分地区单单依靠风能发电不能完全满足客户的用电需求。此时客户可以按照需求结合太阳能发电,把系统打造成风光互补系统,科学使用各种自然资源有效增加系统发电量。

风力发电基础工程造价篇五

引言:我国是一个风能资源比较丰富的国家据探明风能理论储量为32.26亿kw,而陆地可开发利用风能为2.53亿kw,近海可利用风能为7.5亿kw,居世界前列.随着我国经济的持续快速增长,对能源的需求与传统化石能源对环境污染的矛盾越来越突出,发展新 的清洁可再生能源成为解决矛盾的有效方法.在目前许多新能源的开发利用中,风力发电凭借其技术的优势和单机容量的高速增长使得风能成为目前世界上增长速度最快最具有竞争力的可利用新能源。[1]本文主要介绍风电场并网对电力系统的影响。

一、对调峰、调频与备用的影响

大规模风电并网的重要制约因素是电网可为风电提供的调峰能力,必须利用全网的调峰、调频能力进行统一平衡,时,常规机组减少出力为风电提供空间。电接入电网功率。风电的反调峰特性,例如,东北电网受冬季火电机组供热影响,反调峰特性,使得系统调峰异常困难,进入制风电出力,最多时限制近

二、对电压与无功功率控制的影响风电机组类型不同,无功功率特性差异很大。早期的风电场多采用的是固定转速风电机组—异步发电机,吸收系统无功且无功不可控,功控制。风机的无功功率不可控,必然导致电压忽高忽低,无功补偿装置频繁投切。风电对系统的电压要求很高(电压偏差不得超过应用的变速风电机组—双馈异步电机和直驱风电机组在1.0,不向系统吸收无功,解决了部分无功电压问题,但不具备恒电压调节能力。区域性无功电压调节问题还需要通过安装svc等动态无功补偿装置、输电通道动态无功补偿设备以及频繁投切的低容低抗来实现。[5]风电功率波动影响主网潮流分布,同时电压波动使无功补偿设备频繁投切。风电场的利用小时数很低一般在电场送出线路长时间会处于轻载状态,电压必然偏高,低抗将长时间投入运行。

三、对电能质量的影响有相当一部分风电机组直接并入配电网,由此带来的电能质量问题尤为突出。电压波动和闪变:风力发电机组大多采用软并网方式,但是在启动时仍会产生较大的冲击电流。当风速超过切出风速时,乎同时动作,这种冲击对配电网的影响十分明显。都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。电给系统带来谐波的途径主要有两种。接和电网相连的固定转速风电机组,定的谐波,不过过程很短,发生的次数也不多,通常可以忽略。但是对于变速风电机组则不然,变速风电机组通过整流和逆变装置接入系统,谐波的范围内,则会产生很严重的谐波问题,逐步得到解决。另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,行中,曾经观测到风电场出口变压器的低压侧产生大量谐波的现象。才能保证全额接受风电和电网安全稳定运行。风电功率具有不确定性,将导致负荷峰谷差增大,使得系统调峰异常困难。火电机组固有的调峰能力大为下降,2008 年冬季以后,多次因低谷调峰问题被迫限400 mw。[6]

需后期改造以配备相应的补偿装置来进行无10%),但它本身就是一个无功干扰源。目前普遍—永磁同步机能够保证风机功率因数avc 等系统手段来实现。风电场提高电压控制手段一般通过2 100~2 400 h,机组出力小于额定功率

如果整个风电场所有风机几不但如此,风速的变化和风机的塔影效应一种是风力发电机本身配备的电力电子装置。软启动阶段要通过电力电子装置与电网相连,如果电力电子装置的切换频率恰好在产生随着电力电子器件的不断改进,当风电功率增加5%的概率最大,所以风[6]谐波污染:风这一问题也在[4][2]

[5]25 对于直会产生一在实际运系统调峰裕度必须大于风加之风电的风机会从额定出力状态自动退出运行。

四、对发电计划与调度的影响

风能的不可控性使得对风电不可能像对其他传统电源一样可以进行可靠预测。风电场并 网以后,电网的可用调峰容量减去用于平衡负荷波动的备用容量后,剩余的可用调峰容量都能够用于为风电调峰,但如果整个电网可用于风电的调峰容量有限,则风电场的实际运行就会受到一定的限制,在电网无法完全平衡风电场的功率波动时,需要限制风电注人电网的功率。[4]由于当前我国电网中风电的比例不高,因此在电网调度工作中一般不把风电纳入电网调度.且由于尚未开展风电功率预测的研究与应用,因此风电功率的波动对于电网而言完全是随机的,最严重的情况就等于整个风电装机容量大小的风电功率在短时间内的波动,虽然发生这种情况的概率较小,但是在实际运行中仍无法排除发生这种情况的可能性由于系统需要有与风 电场额定容量相当的备用容量,在风停时替代风电场,这使得风电上网成本增加。目前,我国相关省区电网调度根据风由各省自行平衡,基本上不安排风电的发电调度计划

结语

随着气候的变迁,环境的恶化资源的短缺发展新的清洁可再生能源已成为一种趋势合理地开发和利用风能成为解决矛盾的一种方法,的成果,对我国电网进一步的改造和开发新技术以支撑风电的大规模并网.的快速稳步发展。

参考文献:

[1]裴哲义,董存,辛耀中。我国风电并网运行最新进展[2]张洋,风电场无功补偿容量及其控制方法的研究[3]陈向民,姚强。风力发电前经济技术分析[4]胡斌,杨鹏举。关于风电接入系统若干问题的思考[5]吴雄飞。大型风电并网系统电压稳定性研究[6]电监会.我国风电发展情况 调研报告

只要结合我国的实际情况,[j] 新能源 [d].长春[j] 科技创新导报[j] 中国电力教育[j ]宣称供电公司[d].北京 :国家电力监管委员会借鉴国外已有以支持国民经济 第11期

:东北电力大学,2010 no.35

2010,2005. 36期 2009.

电场实际发电出力对网内其他电厂出力进行调整,年第,

标签:风力 发电 基础 工程造价 五篇 通用

猜你喜欢